(a)

1.

Discuss how these scans are used to help provide the best and safes patient when using the high-energy X-rays.	
Lead is commonly used as shielding when using X-rays due to its sm thickness.	all half-value
Which statement gives the correct meaning of half-value thickness? Tick (\checkmark) the correct answer.	
The thickness of material needed to reduce the energy of an X-ray photon by half.	
The thickness of material needed to reduce the wavelength of the photons in the X-ray beam by half.	
The thickness of material needed to reduce the intensity of the X-ray beam by half.	
.,	

High-energy X-rays are used in the treatment of a cancer tumour inside a patient's body.

(c) The half-value thickness of lead for 500 keV X-rays is 4.2×10^{-3} m Calculate the mass attenuation coefficient of lead for 500 keV X-rays. State an appropriate unit for your answer.

density of lead = $1.1 \times 10^4 \text{ kg m}^{-3}$

mass attenuation coefficient = _____ unit _____

(4)

(Total 8 marks)

2.

In the past, doctors could only use a simple X-ray image to assess head injuries.

A CT scan is now a preferred technique.

Discuss why the CT scan has replaced the simple X-ray image to assess head injuries, but a simple X-ray procedure is suitable for assessing other injuries.

In your answer, you should:

•	describe	the	basic	princi	ples d	of a (CT	scanner

discuss the advantage of the CT scan over a simple X-ray image for head injuries

explain why a simple X-ray procedure is more suitable for assessing other injuries.

(Total 6 marks)

3.

X-ray photons can be used to treat cancerous tumours in radiotherapy. Some photons are absorbed by healthy tissue before they reach the tumour.

Photons with a range of energies are generated in an X-ray machine.

Table 1 shows the linear attenuation coefficient of brain tissue for photons of energy 100 keV and 500 keV.

Table 1

Energy / keV	Linear attenuation coefficient of brain tissue / cm ⁻¹
100	0.15
500	0.087

(4)

tumour a	t a depth of 11 cm.	ergy 100 keV or 500	kev are better for	treating a
	ers are used in X-ray r gives data for possible	filter materials.	uamage to neating	y tissues.
	gives data for possible	Table 2 Linear attenuation	on coefficient /	y tissues.
		Table 2 Linear attenuation	on coefficient / -1	y tissues.
	gives data for possible	Table 2 Linear attenuation	on coefficient /	y tissues.
	gives data for possible Energy / keV	Table 2 Linear attenuation cm Aluminium	on coefficient / −1 Copper	y tissues.
Table 2 (Energy / keV 100 500	Table 2 Linear attenuation cm Aluminium 0.44 0.23	Copper 3.8 0.73	
Discuss part (a).	Energy / keV 100 500 whether it would be be	Table 2 Linear attenuation cm Aluminium 0.44 0.23	Copper 3.8 0.73	
Discuss part (a).	Energy / keV 100 500	Table 2 Linear attenuation cm Aluminium 0.44 0.23	Copper 3.8 0.73	
Discuss part (a).	Energy / keV 100 500 whether it would be be	Table 2 Linear attenuation cm Aluminium 0.44 0.23	Copper 3.8 0.73	
Discuss part (a).	Energy / keV 100 500 whether it would be be	Table 2 Linear attenuation cm Aluminium 0.44 0.23	Copper 3.8 0.73	
Discuss part (a).	Energy / keV 100 500 whether it would be be	Table 2 Linear attenuation cm Aluminium 0.44 0.23	Copper 3.8 0.73	
Discuss part (a).	Energy / keV 100 500 whether it would be be	Table 2 Linear attenuation cm Aluminium 0.44 0.23	Copper 3.8 0.73	

(c)	State and explain one other method used to limit exposure of healthy cells during a radiotherapy.	(-ray
	Method	_
	Explanation	_
		_
		_
		(2)
		(Total 8 marks)

4.

In an X-ray machine, X-rays are emitted from an emission spot on a tungsten target.

Figure 1 shows how a total shadow is produced in the region **QR** where no X-rays from any part of the emission spot can reach the photographic plate. Partial shadows are formed in regions **PQ** and **RS** where X-rays from only part of the emission spot can reach the plate.

Figure 2 shows detail of the formation of edges of the partial shadow **PQ**. The bottom of the emission spot is 1.0 m vertically above the plate. The horizontal distance across the beam is 1.0 mm at the bottom of the emission spot.

(a)	To produce a sharp image of a bone, the partial shadow in region PQ must be no more than 0.10 mm wide.	
	Calculate the maximum distance d between a bone and the plate.	
	d = m	
(b)	Discuss whether an X-ray image of a chest or an X-ray image of a hand is likely to be sharper when exposed to the same X-ray source.	(2)
	(Total 4 m	(2) arks)

(a)	A patient with a suspected broken arm is going to have an X-ray image taken.	
	Explain the risk to the patient of exposure to X-rays.	
	Go on to discuss three ways by which the design and use of the X-ray equipment minimises this risk.	
b)	The blood vessel called the aorta passes through the abdomen. A second patient with suspected fault in the wall of the aorta can be given an ultrasound scan or an X-ray of abdomen.	
	Suggest, with reasons, which is the better procedure for investigating this suspected f	ault.

(c) When ultrasound travels across a boundary from blood to the wall of the aorta there is a decrease in acoustic impedance across the boundary. This results in 0.0625% of the intensity of the incident ultrasound being reflected at the boundary.

Calculate the acoustic impedance of the aorta wall tissue.

acoustic impedance of blood =
$$1.64 \times 10^6 \text{ kg m}^{-2} \text{ s}^{-1}$$

acoustic impedance of aorta wall tissue =
$$___$$
 kg m⁻² s⁻¹ (4)

(Total 12 marks)

6. Figure 1 shows the X-ray spectrum produced in a medical X-ray machine at a particular anode potential difference (pd).

Figure 1

Explain how the continuous spectrum and the characteristic spectra are produced by the electron collisions.	e≳
Continuous spectrum	
Characteristic spectra	

In an X-ray tube, electrons collide with a tungsten target.

(4)

(b) The dashed line on **Figure 2** shows the X-ray spectrum for the initial anode pd.

Sketch on **Figure 2** the X-ray spectrum produced when the anode pd is increased.

Figure 2

(2)

(c) In the medical X-ray machine, the X-rays produced with the initial anode pd are now passed through an aluminium filter.

The dashed line on **Figure 3** shows the X-ray spectrum for the initial anode pd.

Sketch on **Figure 3** the X-ray spectrum of the X-rays that emerge from the filter.

Figure 3

(1)

(Total 7 marks)